Secure precoding superimposed with artificial noise (AN) is a promising transmission technique to improve security by harnessing the superposition nature of the wireless medium. However, finding a jointly optimal precoding and AN structure is very challenging in downlink multi-user multiple-input multiple-output (MU-MIMO) wiretap channels with multiple eavesdroppers. The major challenge in maximizing the secrecy rate arises from the non-convexity and non-smoothness of the rate function. Traditionally, an alternating optimization framework that identifies beamforming vectors and AN covariance matrix has been adopted; yet this alternating approach has limitations in maximizing the secrecy rate. In this paper, we put forth a novel secure precoding algorithm that jointly and simultaneously optimizes the beams and AN covariance matrix for maximizing the secrecy rate when a transmitter has either perfect or partial channel knowledge of eavesdroppers. To this end, we first establish an approximate secrecy rate in a smooth function. Then, we derive the first-order optimality condition in the form of the nonlinear eigenvalue problem (NEP). We present a computationally efficient algorithm to identify the principal eigenvector of the NEP as a suboptimal solution for secure precoding. Simulations demonstrate that the proposed methods improve secrecy rate significantly compared to the existing secure precoding methods.
翻译:使用人工噪声( AN) 进行安全预译, 使用人工噪声( AN) 进行安全预译, 是一种有希望的传输技术, 利用无线介质的叠加性来改善安全性。 但是, 找到一种联合优化的预编码和AN结构, 与多个窃听器连接多用户多输入多输出输出线( MMU- MIMO) 管道。 最大程度保密率的主要挑战来自该速度功能的非调和不移动性。 传统上, 已经采用了一种交替优化框架, 用以识别波纹矢量和AN 共变矩阵; 然而, 这种交替方法在最大程度保密率方面有局限性。 在本文中, 我们提出了一个新的安全预译算算算法, 共同同时优化波束和组合, 当一个传输器拥有精密或部分对电子吸听器的了解时, 最大程度的保密率。 为此, 我们首先在一种平稳的功能中建立一种近似的保密率。 然后, 我们从非线化矢调矢量值矢中得出最优化的最优的最佳状态状态状态状态, 用于演示目前的安全度的Simcol- precolvical 。