We establish the minimax risk for parameter estimation in sparse high-dimensional Gaussian mixture models and show that a constrained maximum likelihood estimator (MLE) achieves the minimax optimality. However, the optimization-based constrained MLE is computationally intractable due to non-convexity of the problem. Therefore, we propose a Bayesian approach to estimate high-dimensional Gaussian mixtures whose cluster centers exhibit sparsity using a continuous spike-and-slab prior, and prove that the posterior contraction rate of the proposed Bayesian method is minimax optimal. The mis-clustering rate is obtained as a by-product using tools from matrix perturbation theory. Computationally, posterior inference of the proposed Bayesian method can be implemented via an efficient Gibbs sampler with data augmentation, circumventing the challenging frequentist nonconvex optimization-based algorithms. The proposed Bayesian sparse Gaussian mixture model does not require pre-specifying the number of clusters, which is allowed to grow with the sample size and can be adaptively estimated via posterior inference. The validity and usefulness of the proposed method is demonstrated through simulation studies and the analysis of a real-world single-cell RNA sequencing dataset.


翻译:我们为稀少高斯高斯混合物模型的参数估计确定了最小值风险,并表明受限最大可能性估测器(MLE)能够实现微缩最大最佳性。然而,由于问题不协调,基于优化的受限MLE在计算上是难以解决的。因此,我们建议采用巴伊西亚方法来估计高位混合物,其集束中心在使用连续的峰值和悬浮法之前表现出广度,并证明拟议的巴伊西亚方法的后端收缩率是最佳的。错误集束率是利用矩阵渗透理论的工具作为副产品取得的。比较而言,拟议巴伊西亚方法的后端推推推法可以通过高效的Gibs采样器和数据增强法加以实施,从而绕过具有挑战性的常态非凝固法优化算法。拟议的巴伊西亚稀释质组混合物模型不需要预先估测组群数,这种组数可以随着样品大小而增长,并且可以通过图像模拟法和单一序列分析方法的可靠度估算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月16日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员