Aiming to provide weak as possible axiomatic assumptions in which one can develop basic linear algebra, we give a uniform and integral version of the short propositional proofs for the determinant identities demonstrated over $GF(2)$ in Hrubes-Tzameret [SICOMP'15]. Specifically, we show that the multiplicativity of the determinant function and the Cayley-Hamilton theorem over the integers are provable in the bounded arithmetic theory $\mathbf{VNC}^2$; the latter is a first-order theory corresponding to the complexity class $\mathbf{NC}^2$ consisting of problems solvable by uniform families of polynomial-size circuits and $O(\log ^2 n)$-depth. This also establishes the existence of uniform polynomial-size $\mathbf{NC}^2$-Frege proofs of the basic determinant identities over the integers (previous propositional proofs hold only over the two element field).
翻译:为了提供尽可能弱的逻辑假设,使人们能够发展基本的线性代数,我们给出一个统一和完整的版本,为在Hrubes-Tzameret [SICOMP'15] 中显示超过$GF(2)美元的决定因素身份提供简短的假设。具体地说,我们表明,在受约束的算术理论$\mathbf{VNC ⁇ 2$中,决定因素函数和Cayley-Hamilton定理对整数的倍数性是可行的;后者是相当于复杂等级$\mathbf{NC ⁇ 2$的第一阶理论,后者由多米规模电路和O(log ⁇ 2 n) 深度等统一家庭可以解决的问题组成,这还证明存在对整数基本决定因素的基本证据的统一多数值 $\mathbf{NCNC ⁇ 2-Frege证据(先前的推定证据只存在于两个元素领域)。