Seam-cutting and seam-driven techniques have been proven effective for handling imperfect image series in image stitching. Generally, seam-driven is to utilize seam-cutting to find a best seam from one or finite alignment hypotheses based on a predefined seam quality metric. However, the quality metrics in most methods are defined to measure the average performance of the pixels on the seam without considering the relevance and variance among them. This may cause that the seam with the minimal measure is not optimal (perception-inconsistent) in human perception. In this paper, we propose a novel coarse-to-fine seam estimation method which applies the evaluation in a different way. For pixels on the seam, we develop a patch-point evaluation algorithm concentrating more on the correlation and variation of them. The evaluations are then used to recalculate the difference map of the overlapping region and reestimate a stitching seam. This evaluation-reestimation procedure iterates until the current seam changes negligibly comparing with the previous seams. Experiments show that our proposed method can finally find a nearly perception-consistent seam after several iterations, which outperforms the conventional seam-cutting and other seam-driven methods.


翻译:缝合和缝合技术已被证明对处理图像缝合中不完善的图像序列有效。 一般来说, 缝合驱动技术是利用缝合法从一个或有限的接合假设中根据预先确定的接合质量度量来找到最佳的接缝。 但是, 多数方法的质量度量都是为了测量像素在缝合中的平均性能而没有考虑到它们之间的关联性和差异。 这可能导致与最低限度测量方法的接合在人类感知中不是最佳的( 感知和不相容 ) 。 在本文中, 我们提出一种新的粗略到平面的接合估计方法, 以不同的方式应用评价。 对于海接线的像素, 我们开发了一种偏近点评价算法, 更侧重于它们的相关性和变异性。 然后, 评估被用来重新计算重叠区域的差异图, 并重新估计一个缝合的接合。 这种评价估计程序在目前的接合程序下, 直至与以前的接合点变化不明显地比较。 实验表明, 我们提议的方法最终能够找到一种传统的海压方法, 在海后找到其他的海压方法。

4
下载
关闭预览

相关内容

图像拼接(image stitching)是指将两张或更多的有重叠部分的影像,拼接成一张全景图或是高分辨率影像的技术。图像拼接有两大步骤:图像配准和图像融合
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Attend More Times for Image Captioning
Arxiv
6+阅读 · 2018年12月8日
Arxiv
4+阅读 · 2018年11月7日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年2月13日
VIP会员
相关VIP内容
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员