Image classification is one of the most important areas in computer vision. Hierarchical multi-label classification applies when a multi-class image classification problem is arranged into smaller ones based upon a hierarchy or taxonomy. Thus, hierarchical classification modes generally provide multiple class predictions on each instance, whereby these are expected to reflect the structure of image classes as related to one another. In this paper, we propose a multi-label capsule network (ML-CapsNet) for hierarchical classification. Our ML-CapsNet predicts multiple image classes based on a hierarchical class-label tree structure. To this end, we present a loss function that takes into account the multi-label predictions of the network. As a result, the training approach for our ML-CapsNet uses a coarse to fine paradigm while maintaining consistency with the structure in the classification levels in the label-hierarchy. We also perform experiments using widely available datasets and compare the model with alternatives elsewhere in the literature. In our experiments, our ML-CapsNet yields a margin of improvement with respect to these alternative methods.
翻译:图像分类是计算机视觉中最重要的领域之一。 当根据等级或分类法将多级图像分类问题排列成小类时,可适用等级性多标签分类。 因此, 等级分类模式通常对每个实例提供多级预测, 从而预期这些预测将反映彼此关联的图像类别结构。 在本文中, 我们提议为等级分类建立一个多标签胶囊网络( ML- CapsNet ) 。 我们的 ML- CapsNet 预测基于等级级标签树结构的多个图像类别。 为此, 我们提出了一个考虑到网络多标签预测的亏损函数。 因此, 我们的 ML- CapsNet 培训方法使用粗略的精细范例, 与标签- 等级分类层次的结构保持一致。 我们还使用广泛可用的数据集进行实验, 并将模型与文献中其他地方的替代方法进行比较。 在我们的实验中, 我们的 ML- CapsNet 生成了这些替代方法的改进幅度。