We consider a simple approach for approximating detailed information about the conditional distribution of a real-valued response variable, given values for its covariates, using only the outputs from a standard regression model. We validate this approach by assessing its performance in the context of quantile regression; when applied to the outputs of linear, gradient boosted tree ensemble and random forest models. We find that it compares favourably to the standard approach for estimating quantile regression functions, especially for commonly selected tail probabilities, and is highly competitive with the quantile regression forest model, across a large collection of benchmark data sets.
翻译:我们认为,一种简单的方法是,仅使用标准回归模型的产出,仅使用标准回归模型的产出,就实际价值响应变量(其共变值的定值)的有条件分布提供详细信息,以近似于有关该变量的详细信息。 我们通过评估其在四分位回归情况下的绩效来验证这一方法;当应用于线性、梯度增强树群和随机森林模型的输出时,我们发现它优于估计量化回归功能的标准方法,特别是对于通常选定的尾巴概率而言,而且与量化回归森林模型相比,在大量基准数据集中具有高度竞争力。