High-dimensional classification is a fundamentally important research problem in high-dimensional data analysis. In this paper, we derive a nonasymptotic rate for the minimax excess misclassification risk when feature dimension exponentially diverges with the sample size and the Bayes classifier possesses a complicated modular structure. We also show that classifiers based on deep neural networks can attain the above rate, hence, are minimax optimal.
翻译:高维分类是高维数据分析中一个根本重要的研究问题。 在本文中,当特征层面与样本大小相差极大,而贝耶斯分类者拥有复杂的模块结构时,我们得出了小型最大超过误分类风险的非抗药性比率。 我们还表明,基于深神经网络的分类者可以达到上述比率,因此是最理想的。</s>