We consider the problem of posting prices for unit-demand buyers if all $n$ buyers have identically distributed valuations drawn from a distribution with monotone hazard rate. We show that even with multiple items asymptotically optimal welfare can be guaranteed. Our main results apply to the case that either a buyer's value for different items are independent or that they are perfectly correlated. We give mechanisms using dynamic prices that obtain a $1 - \Theta \left( \frac{1}{\log n}\right)$-fraction of the optimal social welfare in expectation. Furthermore, we devise mechanisms that only use static item prices and are $1 - \Theta \left( \frac{\log\log\log n}{\log n}\right)$-competitive compared to the optimal social welfare. As we show, both guarantees are asymptotically optimal, even for a single item and exponential distributions.
翻译:我们考虑单位需求买家的贴现价格问题,如果所有美元买家都从单调风险率的分配中得出相同的分配价值。 我们表明,即使有多个项目,也能够保证最佳福利。 我们的主要结果适用于买家对不同项目的价值要么独立,要么它们完全相关的情况。 我们提供机制,使用动态价格获得1美元 -\ Theta\left(\frac{1\hürg n ⁇ right)美元,从而在预期中破坏最佳社会福利。 此外,我们设计的机制只能使用静态项目价格,并且比最佳社会福利高1美元 -\theta\left(\\frac\log\log\log\ nüright)的竞争力。 正如我们所显示的那样,两种保障都是不那么最佳的。