Stolarsky's invariance principle quantifies the deviation of a subset of a metric space from the uniform distribution. Classically derived for spherical sets, it has been recently studied in a number of other situations, revealing a general structure behind various forms of the main identity. In this work we consider the case of finite metric spaces, relating the quadratic discrepancy of a subset to a certain function of the distribution of distances in it. Our main results are related to a concrete form of the invariance principle for the Hamming space. We derive several equivalent versions of the expression for the discrepancy of a code, including expansions of the discrepancy and associated kernels in the Krawtchouk basis. Codes that have the smallest possible quadratic discrepancy among all subsets of the same cardinality can be naturally viewed as energy minimizing subsets in the space. Using linear programming, we find several bounds on the minimal discrepancy and give examples of minimizing configurations. In particular, we show that all binary perfect codes have the smallest possible discrepancy.


翻译:Stolarsky 的不一致性原则量化了一个计量空间子集与统一分布的偏差。 最近对球形组进行了一系列其他情况的典型研究,揭示了各种主要特性形式背后的一般结构。 在这项工作中,我们考虑了有限度空间的情况,将子数的二次差异与该子数的距离分布的某种函数联系起来。我们的主要结果与哈明空间的不一致性原则的具体形式有关。我们得出了一个代码差异表达的数种等同版本,包括克劳丘克基础的差异和相关内核的扩展。同一基点中所有子组之间差别最小的代码可以自然地被视为空间能量最小化子子。我们用线性编程来找出最小差异的几个界限,并举例说明最小化配置。特别是,我们显示所有二进制完美代码都有最小的可能差异。

0
下载
关闭预览

相关内容

迄今为止,产品设计师最友好的交互动画软件。

【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
43+阅读 · 2021年9月19日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月20日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
43+阅读 · 2021年9月19日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
41+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员