We study several problems on geometric packing and covering with movement. Given a family $\mathcal{I}$ of $n$ intervals of $\kappa$ distinct lengths, and another interval $B$, can we pack the intervals in $\mathcal{I}$ inside $B$ (respectively, cover $B$ by the intervals in $\mathcal{I}$) by moving $\tau$ intervals and keeping the other $\sigma = n - \tau$ intervals unmoved? We show that both packing and covering are W[1]-hard with any one of $\kappa$, $\tau$, and $\sigma$ as single parameter, but are FPT with combined parameters $\kappa$ and $\tau$. We also obtain improved polynomial-time algorithms for packing and covering, including an $O(n\log^2 n)$ time algorithm for covering, when all intervals in $\mathcal{I}$ have the same length.
翻译:我们研究了几何包装和移动覆盖方面的几个问题。 如果一个家庭, 美元= mathcal{I} 美元, 美元间距为 $\ kapa 美元, 另一间间距为 $\ kapa 美元, 我们可以在美元内打包( 分别以 $\ mathcal{I} 美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付, 以美元支付时间算出一个, 以美元支付, 以美元支付一个美元计, 以同一时间算算。