Motivation: Combining the results of different experiments to exhibit complex patterns or to improve statistical power is a typical aim of data integration. The starting point of the statistical analysis often comes as sets of p-values resulting from previous analyses, that need to be combined in a flexible way to explore complex hypotheses, while guaranteeing a low proportion of false discoveries. Results: We introduce the generic concept of composed hypothesis, which corresponds to an arbitrary complex combination of simple hypotheses. We rephrase the problem of testing a composed hypothesis as a classification task, and show that finding items for which the composed null hypothesis is rejected boils down to fitting a mixture model and classify the items according to their posterior probabilities. We show that inference can be efficiently performed and provide a thorough classification rule to control for type I error. The performance and the usefulness of the approach are illustrated on simulations and on two different applications. The method is scalable, does not require any parameter tuning, and provided valuable biological insight on the considered application cases. Availability: The QCH methodology is implemented in the qch R package hosted on CRAN.


翻译:动机:将不同实验的结果结合起来,以展示复杂的模式或提高统计能力,这是数据整合的一个典型目的。统计分析的起点往往是以前分析得出的一套p值,需要灵活地结合,以探讨复杂的假设,同时保证虚假发现的比例较低。结果:我们引入了组合假设的通用概念,这与简单假设的任意复杂组合相对应。我们把测试一个组合假设的问题重新表述为一项分类任务,并表明发现一个被否定的无效假设被否定的物品,将之归结为混合模型,并根据其后继概率对物品进行分类。我们表明,可以有效地进行推断,并为控制I类错误提供一个彻底的分类规则。该方法的性能和有用性在模拟和两种不同的应用上加以说明。该方法可以缩放,不需要任何参数调整,并且对考虑的应用案例提供宝贵的生物洞察力。可用:QCH方法在CRAN主机的qch R软件包中实施。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月20日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员