We generalize signature Gr\"obner bases, previously studied in the free algebra over a field or polynomial rings over a ring, to ideals in the mixed algebra $R[x_1,...,x_k]\langle y_1,\dots,y_n \rangle$ where $R$ is a principal ideal domain. We give an algorithm for computing them, combining elements from the theory of commutative and noncommutative (signature) Gr\"obner bases, and prove its correctness. Applications include extensions of the free algebra with commutative variables, e.g., for homogenization purposes or for performing ideal theoretic operations such as intersections, and computations over $\mathbb{Z}$ as universal proofs over fields of arbitrary characteristic. By extending the signature cover criterion to our setting, our algorithm also lifts some technical restrictions from previous noncommutative signature-based algorithms, now allowing, e.g., elimination orderings. We provide a prototype implementation for the case when $R$ is a field, and show that our algorithm for the mixed algebra is more efficient than classical approaches using existing algorithms.
翻译:我们普遍化了签名 Gr\ “ obner 基础, 先前在一字段或环上的多角度环的免费代数中研究过, 包括混合代数$R[x_1,...,x_k]\langle y_ 1,\dots, y_n\rangle$, 其中$R$是一个主要理想域。 我们给出了计算它们的算法, 结合了交替和非交替性( 签名) Gr\\\"obner 基础的理论要素, 并证明了其正确性。 应用包括了自由代数的扩展, 具有交替变量, 例如, 用于同质化目的或用于执行理想的理论操作, 如交叉, 并计算了 $\ mathb ⁇ $作为任意特性域的普遍证据。 通过将签名覆盖标准扩展到我们的设置, 我们的算法还解除了先前的非交替性签名算法中的一些技术限制, 现在允许, 例如取消排序 。 当 $R$为字段时, 我们为案例提供原型实施执行方法, 并且 显示我们使用 混合代数的算算法比 比较有效。