A graph is $O_k$-free if it does not contain $k$ pairwise vertex-disjoint and non-adjacent cycles. We show that Maximum Independent Set and 3-Coloring in $O_k$-free graphs can be solved in quasi-polynomial time. As a main technical result, we establish that "sparse" (here, not containing large complete bipartite graphs as subgraphs) $O_k$-free graphs have treewidth (even, feedback vertex set number) at most logarithmic in the number of vertices. This is proven sharp as there is an infinite family of $O_2$-free graphs without $K_{3,3}$-subgraph and whose treewidth is (at least) logarithmic. Other consequences include that most of the central NP-complete problems (such as Maximum Independent Set, Minimum Vertex Cover, Minimum Dominating Set, Minimum Coloring) can be solved in polynomial time in sparse $O_k$-free graphs, and that deciding the $O_k$-freeness of sparse graphs is polynomial time solvable.
翻译:图表为 $O_k$ 如果它不包含 $k$ 双向顶端脱节和非对称周期, 则没有 $O_k$ 的图形为 $O_k$ 。 我们显示, 无 O_k$ 的最大独立设置 和 $O_k$ 的3 彩色可以在 准圆形时解答 。 作为主要的技术结果, 我们确认“ sparse ” (这里不包含大量完整的双边图作为子图 ) $O_k$ 的无边图 ) 在最多对数对数的对数中, $O_ 3, 3}/k$ 的无边图可以解答 。 其它后果包括, 大部分中央NP- 完整的问题( 如最大独立设置、 最低通顶点、 最低定点、 最低定点、 最低定点) 可以在稀薄的 $_ kn- free 图表中以多元时间解答 。 这已被证明是 $_ knol- slgromagnalnal- salnal- sqolable.