We show that the problem of deciding whether a given graph $G$ has a well-balanced orientation $\vec{G}$ such that $d_{\vec{G}}^+(v)\leq \ell(v)$ for all $v \in V(G)$ for a given function $\ell:V(G)\rightarrow \mathbb{Z}_{\geq 0}$ is NP-complete. We also prove a similar result for best-balanced orientations. This improves a result of Bern\' ath, Iwata, Kir\' aly, Kir\'aly and Szigeti and answers a question of Frank.
翻译:我们显示,确定某一图表$G$是否具有相当平衡的定向 $\vec{G}$(v)\leq\ ell(v)$(v) $v\ in V(G)$(美元):$(G)\rightrow\\mathb*ge) $(0)美元)是否为NP-完整的问题。对于最平衡的定向,我们也证明了类似的结果。这改善了伯尔尼和阿特、伊瓦塔、基尔阿利、基尔阿利和西格提的计算结果,并回答了弗兰克的问题。