The tritium breeding ratio (TBR) is an essential quantity for the design of modern and next-generation D-T fueled nuclear fusion reactors. Representing the ratio between tritium fuel generated in breeding blankets and fuel consumed during reactor runtime, the TBR depends on reactor geometry and material properties in a complex manner. In this work, we explored the training of surrogate models to produce a cheap but high-quality approximation for a Monte Carlo TBR model in use at the UK Atomic Energy Authority. We investigated possibilities for dimensional reduction of its feature space, reviewed 9 families of surrogate models for potential applicability, and performed hyperparameter optimisation. Here we present the performance and scaling properties of these models, the fastest of which, an artificial neural network, demonstrated $R^2=0.985$ and a mean prediction time of $0.898\ \mu\mathrm{s}$, representing a relative speedup of $8\cdot 10^6$ with respect to the expensive MC model. We further present a novel adaptive sampling algorithm, Quality-Adaptive Surrogate Sampling, capable of interfacing with any of the individually studied surrogates. Our preliminary testing on a toy TBR theory has demonstrated the efficacy of this algorithm for accelerating the surrogate modelling process.
翻译: ⁇ 育率是设计现代和下一代D-T燃料核聚变反应堆的必要数量。代表着在反应堆运行期间生产毛毯和燃料消耗过程中产生的 ⁇ 燃料的比例,TBR依赖反应堆的几何和材料性质复杂。在这项工作中,我们探索了代孕模型的培训,以便为联合王国原子能管理局使用的蒙特卡洛TBR模型产生廉价但高质量的近似值。我们研究了其地貌空间的尺寸缩小的可能性,审查了9个代孕模型的可适用性,并进行了超光谱优化。我们在这里介绍了这些模型的性能和规模特性,其中最快的是人造神经网络,展示了0.988美元=0.985美元,平均预测时间为0.98\\ mmum\ mathrs}$,这是相对而言,与昂贵的MC模型相比,速度为8美元。我们进一步展示了一种新的适应性抽样算法,即质素-质子替代制子模型模型的可适用性能,并进行了超标度优化。在这里,我们展示了这些模型的性能和规模最快的,即人工神经网络网络,展示了0.98\=9美元,平均预测时间,代表了我们实验的模型的模型测试。