Linear temporal logic (LTL) offers a simplified way of specifying tasks for policy optimization that may otherwise be difficult to describe with scalar reward functions. However, the standard RL framework can be too myopic to find maximally LTL satisfying policies. This paper makes two contributions. First, we develop a new value-function based proxy, using a technique we call eventual discounting, under which one can find policies that satisfy the LTL specification with highest achievable probability. Second, we develop a new experience replay method for generating off-policy data from on-policy rollouts via counterfactual reasoning on different ways of satisfying the LTL specification. Our experiments, conducted in both discrete and continuous state-action spaces, confirm the effectiveness of our counterfactual experience replay approach.
翻译:线性时间逻辑(LTL)提供了一种简化的方法,用于规定政策优化的任务,否则可能很难用卡路里奖赏功能来描述。然而,标准的RL框架可能过于短视,无法找到最大限度满足LTL的政策。本文做出了两项贡献。首先,我们开发了一个新的基于价值功能的代用工具,使用我们称之为最终折扣的方法,根据这种方法,人们可以找到符合LTL规格的政策,其可能性最高。第二,我们开发了一种新的经验重放方法,通过反事实推理,通过不同方式满足LTL规格,从政策推出中产生退出政策的数据。我们在离散和连续的州行动空间进行的实验证实了我们反事实重播方法的有效性。</s>