Magnetic Resonance Imaging allows high resolution data acquisition with the downside of motion sensitivity due to relatively long acquisition times. Even during the acquisition of a single 2D slice, motion can severely corrupt the image. Retrospective motion correction strategies do not interfere during acquisition time but operate on the motion affected data. Known methods suited to this scenario are compressed sensing (CS), generative adversarial networks (GANs), and motion estimation. In this paper we propose a strategy to correct for motion artifacts using Deep Convolutional Neuronal Networks (Deep CNNs) in a reliable and verifiable manner by explicit motion estimation. The sensitivity encoding (SENSE) redundancy that multiple receiver coils provide, has in the past been used for acceleration, noise reduction and rigid motion compensation. We show that using Deep CNNs the concepts of rigid motion compensation can be generalized to more complex motion fields. Using a simulated synthetic data set, our proposed supervised network is evaluated on motion corrupted MRIs of abdomen and head. We compare our results with rigid motion compensation and GANs.
翻译:翻译摘要:
磁共振成像允许高分辨率数据采集,但由于相对较长的采集时间具有运动敏感性的缺点。即使在采集一个2D切片期间,运动也可能严重破坏图像。回顾性运动校正策略不会在采集期间干扰,但会在受运动影响的数据上操作。适用于这种情况的已知方法包括压缩感知(CS)、生成对抗网络(GAN)和运动估计。在本文中,我们提出了一种通过显式运动估计使用深度卷积神经网络(Deep CNNs)进行运动伪影校正的策略,以可靠和可验证的方式。多个接收线圈提供的灵敏度编码(SENSE)冗余,在过去被用于加速、降噪和刚性运动补偿。我们展示了使用Deep CNNs,刚性运动补偿的概念可以推广到更复杂的运动场。使用一个模拟的合成数据集,我们的提议的监督网络在腹部和头部的运动破坏MRIs上进行了评估。我们将结果与刚性运动补偿和GAN进行了比较。