The ground motion prediction equation is commonly used to predict the seismic intensity distribution. However, it is not easy to apply this method to seismic distributions affected by underground plate structures, which are commonly known as abnormal seismic distributions. This study proposes a hybrid of regression and classification approaches using neural networks. The proposed model treats the distributions as 2-dimensional data like an image. Our method can accurately predict seismic intensity distributions, even abnormal distributions.
翻译:通常使用地面运动预测方程式来预测地震强度分布,然而,将这种方法应用于受地下板块结构影响的地震分布并非易事,这些结构通常被称为异常地震分布。本研究提出采用神经网络的回归和分类混合方法。拟议模型将分布作为二维数据处理,如图像。我们的方法可以准确预测地震强度分布,甚至异常分布。