We study entanglement-assisted quantum error-correcting codes (EAQECCs) arising from classical one-point algebraic geometry codes from the Hermitian curve with respect to the Hermitian inner product. Their only unknown parameter is $c$, the number of required maximally entangled quantum states since the Hermitian dual of an AG code is unknown. In this article, we present an efficient algorithmic approach for computing $c$ for this family of EAQECCs. As a result, this algorithm allows us to provide EAQECCs with excellent parameters over any field size.
翻译:我们研究了由赫米提人内产物的埃米提亚曲线经典单点代数几何几何编码产生的缠绕协助量子误差校正代码(EAQECCs),它们唯一的未知参数是$c$,因为一个AG代码的埃米提人双倍值未知,因此所需的最大缠绕量状态数量为$c$,这是需要的。在本篇文章中,我们提出了一个高效的算法方法,用于计算赫卡特人这一组的美元。因此,这种算法使我们能够向EAQECs提供优于任何外观的极佳参数。