We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the $d$-dimensional weighted Korobov space. This algorithm uses a lattice rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget $n$ of a maximum allowed number of function evaluations, we uniformly pick a prime $p$ in the range $n/2 < p \le n$. We show error bounds for the randomised error, which is defined as the worst case expected error, of the form $O(n^{-\alpha - 1/2 + \delta})$, with $\delta > 0$, for a Korobov space with smoothness $\alpha > 1/2$ and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors \emph{offline} ahead of time at cost $O(d n^4 / \ln n)$ when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.
翻译:我们展示了一种非常简单的随机化算法用于数值积分,可以对加权Korobov空间中函数的积分产生接近最优的收敛速度。该算法使用一个固定的生成向量的晶格规则,唯一的随机元素是函数评估的次数的选择。 对于给定的计算预算n(最大允许函数评估数量),我们在范围$n/2<p≤n$内均匀选择一个质数$p$。 我们展示了随机误差的误差界,其中随机误差定义为Korobov空间中函数预期误差的最大情况,对于具有平滑度$\alpha>1/2$和一般权重的Korobov空间,其形式为$O(n^{-\alpha-1/2+\delta})$,其中$\delta>0$。 在满足权重的通常条件下,该界中的隐式常数与维度无关。 我们提出了一种可以离线构造适当的生成向量的算法,预先处理成本为$O(d n^4 / \ln n)$,当定义Korobov空间的权重参数为所谓的乘积权重时。 对于这种情况,数值实验证实了我们理论的新随机化算法可以实现随机误差的近似最优率。