We introduce the problem of adapting a stable matching to forced and forbidden pairs. Specifically, given a stable matching $M_1$, a set $Q$ of forced pairs, and a set $P$ of forbidden pairs, we want to find a stable matching that includes all pairs from $Q$, no pair from $P$, and that is as close as possible to $M_1$. We study this problem in four classical stable matching settings: Stable Roommates (with Ties) and Stable Marriage (with Ties). As our main contribution, we employ the theory of rotations for Stable Roommates to develop a polynomial-time algorithm for adapting Stable Roommates matchings to forced pairs. In contrast to this, we show that the same problem for forbidden pairs is NP-hard. However, our polynomial-time algorithm for the case of only forced pairs can be extended to a fixed-parameter tractable algorithm with respect to the number of forbidden pairs when both forced and forbidden pairs are present. Moreover, we also study the setting where preferences contain ties. Here, depending on the chosen stability criterion, we show either that our algorithmic results can be extended or that formerly tractable problems become intractable.
翻译:我们引入了稳定匹配强制和禁止配对的问题。 具体地说, 在稳定匹配$1美元、 固定强制配对美元和固定禁配美元的情况下, 我们想要找到一个稳定匹配, 包括所有来自$Q的对, 没有一对来自$P的对, 并且尽可能接近$1美元。 我们用四个传统稳定的匹配环境来研究这一问题: 稳定室友( 带领带) 和稳定婚姻( 带领带) 。 作为我们的主要贡献, 我们使用稳定室友轮值理论来开发一个将稳定室友配对与强制配对的多位时算法。 与此相反, 我们发现, 禁止配对的同样问题在于硬性。 然而, 我们对于只有强制配对的多位时算法可以扩展成一个固定的可调控算法, 在强制配对和禁配对同时存在时, 我们也可以研究选择的配方配方配方的配方配方的配方的配方的配方的配方配置, 。 此外, 我们还要研究一个包含可加固度的配方。