In this article, we study nonparametric inference for a covariate-adjusted regression function. This parameter captures the average association between a continuous exposure and an outcome after adjusting for other covariates. In particular, under certain causal conditions, this parameter corresponds to the average outcome had all units been assigned to a specific exposure level, known as the causal dose-response curve. We propose a debiased local linear estimator of the covariate-adjusted regression function, and demonstrate that our estimator converges pointwise to a mean-zero normal limit distribution. We use this result to construct asymptotically valid confidence intervals for function values and differences thereof. In addition, we use approximation results for the distribution of the supremum of an empirical process to construct asymptotically valid uniform confidence bands. Our methods do not require undersmoothing, permit the use of data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of convergence for a twice differentiable function. We illustrate the practical performance of our estimator using numerical studies and an analysis of the effect of air pollution exposure on cardiovascular mortality.
翻译:在本篇文章中,我们研究了共变调整回归函数的非参数推断值。 这个参数捕捉了连续接触和调整其他共变后的结果之间的平均关联。 在某些因果条件下, 这个参数与平均结果相对应, 如果所有单位都被指定到特定接触水平, 被称为因果剂量反应曲线。 我们建议了共变调整回归函数的偏差局部线性估计值, 并表明我们的估计值会接近于平均值- 零正常极限分布。 我们使用这一结果来构建功能值及其差异的无现有效信任间隔。 此外, 我们使用近似结果来分配实验过程的顶部, 来构建无因果有效的统一信任带。 我们的方法并不要求低动, 允许使用对调调调调的调控点函数, 并且我们的估计器在两个不同功能上达到了最佳的趋同率。 我们用数字研究和分析了我们测算器对空气接触率的实际表现。