In the symbolic verification of cryptographic protocols, a central problem is deciding whether a protocol admits an execution which leaks a designated secret to the malicious intruder. Rusinowitch and Turuani (2003) show that, when considering finitely many sessions and a protocol model where only terms are communicated, this ``insecurity problem'' is NP-complete. Central to their proof strategy is the observation that any execution of a protocol can be simulated by one where the intruder only communicates terms of bounded size. However, when we consider models where, in addition to terms, one can also communicate logical formulas, the analysis of the insecurity problem becomes tricky. In this paper we consider the insecurity problem for protocols with logical statements that include equality on terms and existential quantification. Witnesses for existential quantifiers may be of unbounded size, and obtaining small witnesses while maintaining equality proofs complicates the analysis. We use a notion of "typed" equality proofs, and extend techniques from [RT03] to show that this problem is also in NP. We also show that these techniques can be used to analyze the insecurity problem for systems such as the one proposed in Ramanujam, Sundararajan and Suresh (2017).
翻译:在象征性的加密协议核查中,一个中心问题是,协议是否允许向恶意入侵者泄露指定秘密的处决。Rusinowitch和Turuani(2003年)表明,在考虑有限多的会话和只传达术语的协议模式时,“不安全问题”是已完成的。对于其验证战略的核心是,任何协议的执行都可以由入侵者只传达受约束尺寸限制条件的程序模拟。然而,当我们考虑除了用词外还可以传达逻辑公式的模型时,对不安全问题的分析变得棘手。在本文件中,我们考虑了协议的不安全问题,协议的逻辑声明包括条件和生存的量化平等。存在鉴定人的证人可能是无限制的,在保持平等证据的同时获得小证人使分析复杂化。我们使用“类型”平等证明的概念,并将[RT03]的技术推广到[RT03],以表明这一问题也在NP中。我们还表明,这些技术可以用来分析系统不安全的问题,如在Ramaimam、Sundarjan和Sureash17中提议的系统。