Computed medical imaging systems require a computational reconstruction procedure for image formation. In order to recover a useful estimate of the object to-be-imaged when the recorded measurements are incomplete, prior knowledge about the nature of object must be utilized. In order to improve the conditioning of an ill-posed imaging inverse problem, deep learning approaches are being actively investigated for better representing object priors and constraints. This work proposes to use a style-based generative adversarial network (StyleGAN) to constrain an image reconstruction problem in the case where additional information in the form of a prior image of the sought-after object is available. An optimization problem is formulated in the intermediate latent-space of a StyleGAN, that is disentangled with respect to meaningful image attributes or "styles", such as the contrast used in magnetic resonance imaging (MRI). Discrepancy between the sought-after and prior images is measured in the disentangled latent-space, and is used to regularize the inverse problem in the form of constraints on specific styles of the disentangled latent-space. A stylized numerical study inspired by MR imaging is designed, where the sought-after and the prior image are structurally similar, but belong to different contrast mechanisms. The presented numerical studies demonstrate the superiority of the proposed approach as compared to classical approaches in the form of traditional metrics.


翻译:为了在记录测量不完全时恢复对目标的有用估计,必须利用对物体性质的了解。为了改进对不正确成像反向问题的调节,正在积极调查深层次学习方法,以便更好地代表物体的前程和限制。这项工作提议使用基于风格的基因对抗网络(SttyleGAN)来限制图像重建问题,如果能够以所寻求对象的先前图像的形式获得额外信息,则在SteleGAN的中间潜层空间中提出优化问题,这个问题与有意义的图像属性或“样式”脱钩,例如磁共振成像中使用的对比,正在积极调查深层次的学习方法,以更好地代表物体的前端和前端。在分解的潜层空间中测量不同图像的不一致,并用来解决图像重建问题。在Steleg GAN的中间潜层空间中形成了优化问题,与有意义的图像属性或“样式”脱钩,例如磁共振成图像中所使用的对比方法。在结构图象上所设计的典型的对比式数字式模型是先设计的,在结构图象上所设计的比较的模型式模型式模型式模型式的对比方法是先设计的。

0
下载
关闭预览

相关内容

生成对抗网络 (Generative Adversarial Network, GAN) 是一类神经网络,通过轮流训练判别器 (Discriminator) 和生成器 (Generator),令其相互对抗,来从复杂概率分布中采样,例如生成图片、文字、语音等。GAN 最初由 Ian Goodfellow 提出,原论文见 Generative Adversarial Networks

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员