Deep Learning has advanced Automatic Speaker Verification (ASV) in the past few years. Although it is known that deep learning-based ASV systems are vulnerable to adversarial examples in digital access, there are few studies on adversarial attacks in the context of physical access, where a replay process (i.e., over the air) is involved. An over-the-air attack involves a loudspeaker, a microphone, and a replaying environment that impacts the movement of the sound wave. Our initial experiment confirms that the replay process impacts the effectiveness of the over-the-air attack performance. This study performs an initial investigation towards utilizing a neural replay simulator to improve over-the-air adversarial attack robustness. This is achieved by using a neural waveform synthesizer to simulate the replay process when estimating the adversarial perturbations. Experiments conducted on the ASVspoof2019 dataset confirm that the neural replay simulator can considerably increase the success rates of over-the-air adversarial attacks. This raises the concern for adversarial attacks on speaker verification in physical access applications.
翻译:暂无翻译