In this survey paper it is illustrated how spectral clustering methods for unweighted graphs are adapted to the dense and sparse regimes. Whereas Laplacian and modularity based spectral clustering is apt to dense graphs, recent results show that for sparse ones, the non-backtracking spectrum is the best candidate to find assortative clusters of nodes. Here belief propagation in the sparse stochastic block model is derived with arbitrarily given model parameters that results in a non-linear system of equations; with linear approximation, the spectrum of the non-backtracking matrix is able to specify the number $k$ of clusters. Then the model parameters themselves can be estimated by the EM algorithm. Bond percolation in the assortative model is considered in the following two senses: the within- and between-cluster edge probabilities decrease with the number of nodes and edges coming into existence in this way are retained with probability $\beta$. As a consequence, the optimal $k$ is the number of the structural real eigenvalues (greater than $\sqrt{c}$, where $c$ is the average degree) of the non-backtracking matrix of the graph. Assuming, these eigenvalues $\mu_1 >\dots > \mu_k$ are distinct, the multiple phase transitions obtained for $\beta$ are $\beta_i =\frac{c}{\mu_i^2}$; further, at $\beta_i$ the number of detectable clusters is $i$, for $i=1,\dots ,k$. Inflation-deflation techniques are also discussed to classify the nodes themselves, which can be the base of the sparse spectral clustering. Simulation results, as well as real life examples are presented.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员