Person-person mutual action recognition (also referred to as interaction recognition) is an important research branch of human activity analysis. Current solutions in the field -- mainly dominated by CNNs, GCNs and LSTMs -- often consist of complicated architectures and mechanisms to embed the relationships between the two persons on the architecture itself, to ensure the interaction patterns can be properly learned. Our main contribution with this work is by proposing a simpler yet very powerful architecture, named Interaction Relational Network, which utilizes minimal prior knowledge about the structure of the human body. We drive the network to identify by itself how to relate the body parts from the individuals interacting. In order to better represent the interaction, we define two different relationships, leading to specialized architectures and models for each. These multiple relationship models will then be fused into a single and special architecture, in order to leverage both streams of information for further enhancing the relational reasoning capability. Furthermore we define important structured pair-wise operations to extract meaningful extra information from each pair of joints -- distance and motion. Ultimately, with the coupling of an LSTM, our IRN is capable of paramount sequential relational reasoning. These important extensions we made to our network can also be valuable to other problems that require sophisticated relational reasoning. Our solution is able to achieve state-of-the-art performance on the traditional interaction recognition datasets SBU and UT, and also on the mutual actions from the large-scale dataset NTU RGB+D. Furthermore, it obtains competitive performance in the NTU RGB+D 120 dataset interactions subset.
翻译:人与人之间的相互行动认识(也称为互动识别)是人类活动分析的一个重要研究分支。目前,实地的解决方案 -- -- 主要由CNN、GCNs和LSTMs主导 -- -- 通常由复杂的架构和机制组成,将两人之间的关系嵌入该架构本身,确保互动模式能够得到适当的学习。我们在工作中的主要贡献是提出一个更简单、更强大的架构,名为互动关系网络,它利用了关于人体结构的最起码的先前知识。我们推动网络自行确定如何将个人互动的身体部分连接起来。为了更好地代表互动,我们定义了两种不同的关系,导致每种关系都有专门的架构和模式。这些多重关系模式随后将被整合成一个单一和特殊的架构,以便利用这两种信息流来进一步加强关系推理能力。此外,我们定义了重要的结构化双对操作,以便从每对一对配对NSTM -- -- 距离和运动中获取有意义的额外信息。最后,随着LSTM的组合,我们IRN能够实现最重要的连系关系。这些复杂的关系关系,我们与S&LU的相互关系模型之间的这些复杂的互动模式将使得我们的传统数据网络也能够实现宝贵的数据推算。我们的数据升级的大规模互动关系。我们与S&Stradeal的相互关系,我们的数据系统的数据系统在S&S&S&S&LD的升级的升级的升级的升级的升级的升级的升级的升级的升级,我们的数据也能够实现了。我们的数据能在S&LU的升级的升级的升级的升级的升级的升级的升级的升级的升级。我们。我们的数据的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级,我们的数据。我们的数据。我们在S<U的升级的升级的变。