In a dialog system, dialog act recognition and sentiment classification are two correlative tasks to capture speakers intentions, where dialog act and sentiment can indicate the explicit and the implicit intentions separately. The dialog context information (contextual information) and the mutual interaction information are two key factors that contribute to the two related tasks. Unfortunately, none of the existing approaches consider the two important sources of information simultaneously. In this paper, we propose a Co-Interactive Graph Attention Network (Co-GAT) to jointly perform the two tasks. The core module is a proposed co-interactive graph interaction layer where a cross-utterances connection and a cross-tasks connection are constructed and iteratively updated with each other, achieving to consider the two types of information simultaneously. Experimental results on two public datasets show that our model successfully captures the two sources of information and achieve the state-of-the-art performance. In addition, we find that the contributions from the contextual and mutual interaction information do not fully overlap with contextualized word representations (BERT, Roberta, XLNet).


翻译:在对话系统中,对话行为识别和情绪分类是收集发言者意图的两个相关任务,其中对话行为和情绪可以分别表明明确和隐含的意图。对话背景信息(背景信息)和相互互动信息是有助于两项相关任务的两个关键因素。不幸的是,现有方法中没有一个同时考虑这两个重要的信息来源。在本文件中,我们提议建立一个共同互动图形关注网络(Co-GAT),以共同执行这两项任务。核心模块是一个拟议的共同互动图形互动层,其中相互交错连接和交叉任务连接可以建立并相互迭接更新,同时考虑两种类型的信息。两个公共数据集的实验结果显示,我们的模型成功捕捉了两个信息来源并实现了最新业绩。此外,我们发现,背景和相互互动信息的贡献并不与背景化的词表(BERT、Roberta、XLNet)完全重叠。

9
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《深度持续学习》综述论文,32页pdf
专知会员服务
179+阅读 · 2020年9月7日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Github 项目推荐 | 用 Pytorch 实现的 Capsule Network
AI研习社
22+阅读 · 2018年3月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Github 项目推荐 | 用 Pytorch 实现的 Capsule Network
AI研习社
22+阅读 · 2018年3月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员