We propose a Similarity-Based Stratified Splitting (SBSS) technique, which uses both the output and input space information to split the data. The splits are generated using similarity functions among samples to place similar samples in different splits. This approach allows for a better representation of the data in the training phase. This strategy leads to a more realistic performance estimation when used in real-world applications. We evaluate our proposal in twenty-two benchmark datasets with classifiers such as Multi-Layer Perceptron, Support Vector Machine, Random Forest and K-Nearest Neighbors, and five similarity functions Cityblock, Chebyshev, Cosine, Correlation, and Euclidean. According to the Wilcoxon Sign-Rank test, our approach consistently outperformed ordinary stratified 10-fold cross-validation in 75\% of the assessed scenarios.


翻译:我们建议采用基于相似的分解(SBSS)技术,使用输出和输入空间信息来分割数据。这些分解是利用样本中的相似功能生成的,以将相似的样本置于不同的分解中。这个方法可以更好地在培训阶段展示数据。这个战略导致在现实应用中使用更加现实的性能估计。我们用多种视距、支持矢量机、随机森林和K-近距离近距离仪等分类器以及五个相似功能城市区块、Chebyshev、Cosine、Correlation和Euclidean来评估我们的22个基准数据集。根据Wilcoxon 信号-Rank测试,我们的方法在评估的假设情景中,在75 ⁇ 中始终高于普通的10倍交叉校验。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年10月13日
【论文推荐】文本摘要简述
专知会员服务
69+阅读 · 2020年7月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
专知会员服务
63+阅读 · 2020年3月4日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2020年12月3日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
7+阅读 · 2019年10月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员