Hyperbolic-spaces are better suited to represent data with underlying hierarchical relationships, e.g., tree-like data. However, it is often necessary to incorporate, through alignment, different but related representations meaningfully. This aligning is an important class of machine learning problems, with applications as ontology matching and cross-lingual alignment. Optimal transport (OT)-based approaches are a natural choice to tackle the alignment problem as they aim to find a transformation of the source dataset to match a target dataset, subject to some distribution constraints. This work proposes a novel approach based on OT of embeddings on the Poincar\'e model of hyperbolic spaces. Our method relies on the gyrobarycenter mapping on M\"obius gyrovector spaces. As a result of this formalism, we derive extensions to some existing Euclidean methods of OT-based domain adaptation to their hyperbolic counterparts. Empirically, we show that both Euclidean and hyperbolic methods have similar performances in the context of retrieval.
翻译:超曲空格更适合代表具有基本等级关系的数据,例如树类数据。 但是,通常有必要通过对齐纳入不同但相关的表达方式。 这种对齐是一个重要的机器学习问题类别,其应用是本体匹配和跨语言对齐。 最佳迁移( OT) 方法是解决对齐问题的自然选择, 因为它们的目标是找到源数据集的转换, 以匹配目标数据集, 但须受某些分布限制。 这项工作提出了一种基于在超双球空间的 Poincar\'e 模型嵌入OT的新方法。 我们的方法依赖于M\" obius 旋翼空间的旋律中心绘图。 由于这种形式主义, 我们将基于 OT 的域适应的某些现有的 Euclide 方法扩展至其超偏斜对等。 我们的印象显示, EIclidean 和 ybolic 方法在检索方面都有相似的性能 。