The dual-pixel (DP) hardware works by splitting each pixel in half and creating an image pair in a single snapshot. Several works estimate depth/inverse depth by treating the DP pair as a stereo pair. However, dual-pixel disparity only occurs in image regions with the defocus blur. The heavy defocus blur in DP pairs affects the performance of matching-based depth estimation approaches. Instead of removing the blur effect blindly, we study the formation of the DP pair which links the blur and the depth information. In this paper, we propose a mathematical DP model which can benefit depth estimation by the blur. These explorations motivate us to propose an end-to-end DDDNet (DP-based Depth and Deblur Network) to jointly estimate the depth and restore the image. Moreover, we define a reblur loss, which reflects the relationship of the DP image formation process with depth information, to regularise our depth estimate in training. To meet the requirement of a large amount of data for learning, we propose the first DP image simulator which allows us to create datasets with DP pairs from any existing RGBD dataset. As a side contribution, we collect a real dataset for further research. Extensive experimental evaluation on both synthetic and real datasets shows that our approach achieves competitive performance compared to state-of-the-art approaches.


翻译:双像素( DP) 硬件 双像素( DP) 工作, 将每个像素分成一半, 并在一瞬间创建图像配对 。 一些作品通过将DP配对作为立体配对来估计深度/ 反向深度。 然而, 双像素差异只在图像区域出现, 偏焦模糊。 DP配对中的重脱焦模糊影响基于匹配深度估测方法的性能。 我们不是盲目地消除模糊效应, 而是研究将模糊和深度信息联系起来的DP配对的形成。 在本文中, 我们提议了一个数学的DP 模版模型, 它可以通过模糊的深度估算来受益。 这些探索激励我们提出一个终端到终端 DDNet( 基于DP的深度和 Deblur 网络), 以联合估计深度并恢复图像。 此外, 我们定义了一次重标损失, 反映了DP 图像形成过程与深度信息之间的关系, 以在培训中调整我们的深度估测算。 为了满足大量数据的需求, 我们提议第一个 DP 图像模拟器可以让我们从任何现有的RGBD 的对比方法中创建数据集。, 比较真实的实验性数据 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年5月24日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员