Tunnel construction using the drill-and-blast method requires the 3D measurement of the excavation front to evaluate underbreak locations. Considering the inspection and measurement task's safety, cost, and efficiency, deploying lightweight autonomous robots, such as unmanned aerial vehicles (UAV), becomes more necessary and popular. Most of the previous works use a prior map for inspection viewpoint determination and do not consider dynamic obstacles. To maximally increase the level of autonomy, this paper proposes a vision-based UAV inspection framework for dynamic tunnel environments without using a prior map. Our approach utilizes a hierarchical planning scheme, decomposing the inspection problem into different levels. The high-level decision maker first determines the task for the robot and generates the target point. Then, the mid-level path planner finds the waypoint path and optimizes the collision-free static trajectory. Finally, the static trajectory will be fed into the low-level local planner to avoid dynamic obstacles and navigate to the target point. Besides, our framework contains a novel dynamic map module that can simultaneously track dynamic obstacles and represent static obstacles based on an RGB-D camera. After inspection, the Structure-from-Motion (SfM) pipeline is applied to generate the 3D shape of the target. To our best knowledge, this is the first time autonomous inspection has been realized in unknown and dynamic tunnel environments. Our flight experiments in a real tunnel prove that our method can autonomously inspect the tunnel excavation front surface.
翻译:使用钻爆方法的隧道建设要求对挖掘前方进行3D测量,以评价爆破地点。 考虑到检查和测量任务的安全、成本和效率,部署轻型自主机器人,如无人驾驶飞行器(UAV)变得更加必要和受欢迎。 大多数先前的工程使用事先的地图进行检查观点确定,而不考虑动态障碍。为了最大限度地提高自主度,本文件提议在不使用先前的地图的情况下对动态隧道环境进行基于愿景的UAV检查框架。 我们的方法使用一个等级规划方案,将检查问题分解到不同级别。 高级决策者首先决定机器人的任务,并生成目标点。 然后, 中级路径规划员会找到路点, 优化无碰撞静态轨道。 最后, 静态轨道会输入到低级别的本地规划员, 以避免动态障碍, 并引导目标点。 此外, 我们的框架包含一个新的动态地图模块, 可以同时跟踪动态障碍, 并代表基于 RGB- D 相机的静态障碍。 在检查后, 结构- 移动路径规划员首先会找到路径路径路径, 并且我们这个未知的直径前的直径检查环境。