When a mobile robot lacks high onboard computing or networking capabilities, it can rely on remote computing architecture for its control and autonomy. This paper introduces a novel collaborative Simulation Twin (ST) strategy for control and autonomy on resource-constrained robots. The practical implementation of such a strategy entails a mobile robot system divided into a cyber (simulated) and physical (real) space separated over a communication channel where the physical robot resides on the site of operation guided by a simulated autonomous agent from a remote location maintained over a network. Building on top of the digital twin concept, our collaborative twin is capable of autonomous navigation through an advanced SLAM-based path planning algorithm, while the physical robot is capable of tracking the Simulated twin's velocity and communicating feedback generated through interaction with its environment. We proposed a prioritized path planning application to the test in a collaborative teleoperation system of a physical robot guided by ST's autonomous navigation. We examine the performance of a physical robot led by autonomous navigation from the Collaborative Twin and assisted by a predicted force received from the physical robot. The experimental findings indicate the practicality of the proposed simulation-physical twinning approach and provide computational and network performance improvements compared to typical remote computing (or offloading), and digital twin approaches.
翻译:当移动机器人缺乏高机载计算或联网能力时,它可以依靠远程计算架构来控制和自主。本文件介绍了一种新的协作模拟双子(ST)战略,以控制和自主控制资源受限制的机器人。这种战略的实际实施意味着移动机器人系统分为一个网络(模拟)和物理(真实)空间,在物理机器人居住在由模拟自主代理器指导下的通信频道上,该物理机器人位于一个网络维持的远程站点上,操作由模拟自主代理器指导。在数字双胞胎概念之上,我们的协作双胞胎能够通过先进的基于SLAM的道路规划算法实现自主导航,而物理机器人能够跟踪模拟双胞胎的速度,并传播通过与环境的互动产生的反馈。我们提议在由ST自动导航指导的物理机器人协作远程操作系统中,优先规划测试路径的应用。我们研究了由协作双胞胎自动导航引导的物理机器人的性能,并得到了物理机器人的预测力的协助。实验结果显示,拟议的模拟-物理双子双子双向方法的实用性,并提供计算和网络性能,与典型的远程计算和双子计算机相比,提供了计算和双子计算机的典型的改进。</s>