Optical identification is often done with spatial or temporal visual pattern recognition and localization. Temporal pattern recognition, depending on the technology, involves a trade-off between communication frequency, range and accurate tracking. We propose a solution with light-emitting beacons that improves this trade-off by exploiting fast event-based cameras and, for tracking, sparse neuromorphic optical flow computed with spiking neurons. In an asset monitoring use case, we demonstrate that the system, embedded in a simulated drone, is robust to relative movements and enables simultaneous communication with, and tracking of, multiple moving beacons. Finally, in a hardware lab prototype, we achieve state-of-the-art optical camera communication frequencies in the kHz magnitude.
翻译:光学识别往往是通过空间或时间视觉模式识别和定位完成的。根据技术,时间模式识别涉及通信频率、射程和准确跟踪之间的权衡。我们建议了光源信标的解决方案,通过利用快速事件相机来改进这一权衡,并为了跟踪,利用喷发神经神经元计算出来的稀疏神经形态光学流动。在资产监测使用案中,我们证明嵌入模拟无人机的系统对相对移动十分强大,能够与多个移动信标同时进行通信和跟踪。最后,在一个硬件实验室原型中,我们实现了kHz级最先进的光学相机通信频率。</s>