We develop several deep learning algorithms for approximating families of parametric PDE solutions. The proposed algorithms approximate solutions together with their gradients, which in the context of mathematical finance means that the derivative prices and hedging strategies are computed simulatenously. Having approximated the gradient of the solution one can combine it with a Monte-Carlo simulation to remove the bias in the deep network approximation of the PDE solution (derivative price). This is achieved by leveraging the Martingale Representation Theorem and combining the Monte Carlo simulation with the neural network. The resulting algorithm is robust with respect to quality of the neural network approximation and consequently can be used as a black-box in case only limited a priori information about the underlying problem is available. We believe this is important as neural network based algorithms often require fair amount of tuning to produce satisfactory results. The methods are empirically shown to work for high-dimensional problems (e.g. 100 dimensions). We provide diagnostics that shed light on appropriate network architectures.
翻译:我们为接近参数PDE解决方案的家属开发了几种深层次的学习算法。 提议的算法与它们的梯度相近, 在数学融资方面意味着衍生物价格和套期保值策略是模拟的。 近似于该解决方案的梯度可以与蒙特- 卡洛模拟结合起来, 以消除PDE解决方案( 衍生价格) 深度网络近似中的偏差。 这是通过利用 Martingale 代表理论和蒙特卡洛模拟与神经网络相结合实现的。 由此产生的算法在神经网络近似质量方面是稳健的, 因而可以用作黑箱, 以防事先掌握的关于根本问题的有限信息。 我们认为这一点很重要, 因为基于神经网络的算法往往需要相当数量的调整才能产生令人满意的结果。 这些方法在经验上证明能够解决高维问题( 例如 100 维)。 我们提供的诊断可以揭示适当的网络结构。