We introduce Sequential Neural Posterior Score Estimation (SNPSE) and Sequential Neural Likelihood Score Estimation (SNLSE), two new score-based methods for Bayesian inference in simulator-based models. Our methods, inspired by the success of score-based methods in generative modelling, leverage conditional score-based diffusion models to generate samples from the posterior distribution of interest. These models can be trained using one of two possible objective functions, one of which approximates the score of the intractable likelihood, while the other directly estimates the score of the posterior. We embed these models into a sequential training procedure, which guides simulations using the current approximation of the posterior at the observation of interest, thereby reducing the simulation cost. We validate our methods, as well as their amortised, non-sequential variants, on several numerical examples, demonstrating comparable or superior performance to existing state-of-the-art methods such as Sequential Neural Posterior Estimation (SNPE) and Sequential Neural Likelihood Estimation (SNLE).
翻译:我们引入了两个基于模拟模型的新型巴伊西亚推算方法,即模拟模型模型中的两种基于分数的新方法。我们借助基因模型中基于分数的方法,利用基于有条件分数的传播模型,从利害的后传分布中生成样本。这些模型可以使用两种可能的客观函数之一进行培训,其中一种功能近似于棘手可能性的分数,而另一种功能直接估计后传分数。我们将这些模型纳入一个连续培训程序,该程序指导模拟过程,在观察利益时使用远代数的近似值,从而降低模拟成本。我们在若干数字实例中验证了我们的方法及其分数的、非序列式的变异,表明其与当前状态方法相似或优异性表现,如序列神经内侧动和序列内隐隐性Estimation(Snestilement)等。