项目名称: 云计算环境下空间数据访问规律的动态统计方法研究
项目编号: No.41271398
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 天文学、地球科学
项目作者: 潘少明
作者单位: 武汉大学
项目金额: 70万元
中文摘要: 利用空间数据访问分布规律调整存储组织策略和副本分布,能大幅度提高空间数据服务系统性能。云计算环境下,空间数据服务具有节点动态、服务能力异构以及拓扑关系不确定特征,而基于Hotmap和Zipf-like的统计规律都是静态和局部的,一般针对单服务器或集群服务器有效,不能真正实时、动态的反映访问分布规律的全局信息,从而制约了系统服务能力的提高。针对上述问题,课题提出基于云计算的空间数据分布规律动态统计方法,通过空间粒度、时间粒度策略、统计信息表达和分块压缩算法控制统计信息基量,在动态性和实时性上取得平衡;同时,通过虚拟云分组及云链模型、节点优选算法、云协作代理分发以及统计信息全局融合算法,从方法上实现全局统计和控制统计信息总量,在全局性和网络流量上取得平衡。本课题的研究有望解决由于全局动态统计带来的不可承载的网络流量问题,能实时动态跟踪空间数据访问全局分布规律,大大改善空间数据系统公众服务能力。
中文关键词: 空间数据;访问规律;动态统计;数据分布;资源调度
英文摘要: The strategy of storage and organization, copy distribution rule can be adjusted utilizing the access and distribution rule of the spatial data, which will significantly improve system performance of spatial data services. At the environment of cloud computing, the spatial data server have some features are that the peers are dynamic, the service capabilities are isomerism and the topological relations are instable. But the statistical rules based on Hotmap and Zipf-like are static and partially, and are only effective to a single server or cluster servers generally. The server performance are restricted, because the access and distribution rule of the spatial data cannot reflect its global information reallity and dynamic. A dynamic statistics method for the distribution rule of the spatial data based on collaborative cloud is proposed in this paper. Firstly, the method control the amount of basic statistical informations to keep balance of dynamic and real time through the strategy of spatial size, time granularity, information expression and compression algorithm. At the same time, the method control the amount of total statistical informations to keep balance of global and network traffic through cloud grouping and cloud chain model, node selection algorithm, cloud of cooperative agent and global fusion algo
英文关键词: spatial data;access laws;dynamic statistics;data distribution;resource scheduling