Let a polytope $P$ be defined by a system $A x \leq b$. We consider the problem to count a number of integer points inside $P$, assuming that $P$ is $\Delta$-modular. The polytope $P$ is $\Delta$-modular if all the rank sub-determinants of $A$ are bounded by $\Delta$ in the absolute value. We present a new FPT-algorithm, parameterized by $\Delta$ and by the number of simple cones in the normal fun triangulation of $P$, which is more efficient for $\Delta$-modular problems, than the approach of A.~Barvinok et al. To this end, we do not directly compute the short rational generating function for $P \cap Z^n$, which is commonly used for the considered problem. We compute its particular representation in the form of exponential series that depends on one variable, using the dynamic programming principle. We completely do not use the A.~Barvinok's unimodular sign decomposition technique. Using our new complexity bound, we consider different special cases that may be of independent interest. For example, we give FPT-algorithms for counting the integer points number in $\Delta$-modular simplicies and similar polytopes that have $n + O(1)$ facets. For any fixed $m$, we give an FPT-algorithm to count solutions of the unbounded $m$-dimensional $\Delta$-modular knapsack problem. For the case, when $\Delta$ grows slowly with respect to $n$, we give a counting algorithm, which is more effective, than the state of the art ILP feasibility algorithm.
翻译:由 $A x\ leq b 系统来定义一个聚点 $P 。 我们认为问题在于如何在 $P 中计数一些整数点, 假设美元P$是 $Delta$- modal 。 如果所有A$的级别子确定者在绝对值中都受 $\ Delta 美元的约束, 则聚点美元是 $D$ 。 我们提出了一个新的FPT- algorithmm, 以 $Delta$ 参数为参数, 以 $P$ 的正常调试中简单调点数, 假设美元是 $D $D 的元, 假设美元 美元 美元 美元 。 我们完全不使用 A. ~ Barvinok 和 modal 美元 的调数, 以 美元 美元 以 美元 美元 。 以 美元 以 美元 的 美元 的 数字 数, 以 以 指数序列 的形式表示, 以 一种变数为 We 。