We present results of numerical simulations of the tensor-valued elliptic-parabolic PDE model for biological network formation. The numerical method is based on a non-linear finite difference scheme on a uniform Cartesian grid in a 2D domain. The focus is on the impact of different discretization methods and choices of regularization parameters on the symmetry of the numerical solution. In particular, we show that using the symmetric alternating-direction implicit (ADI) method for time discretization helps preserve the symmetry of the solution, compared to the (nonsymmetric) ADI method. Moreover, we study the effect of regularization by isotropic background permeability $r>0$, showing that increased condition number of the elliptic problem due to decreasing value of $r$ leads to loss of symmetry. Finally, we perform numerical error analysis of our method in Wasserstein distance.
翻译:我们展示了用于生物网络形成的高价值椭圆极PDE模型的数字模拟结果。数字方法基于对2D域内统一的笛卡尔网格的非线性有限差异方案。重点是不同离散方法和正规化参数的选择对数字解决方案对称的影响。特别是,我们显示,使用对称交替偏移隐含(ADI)方法的时间分解有助于保持解决方案的对称性,与(非对称)ADI方法相比。此外,我们用异位背景渗透性0.00美元研究异位数问题正规化的影响,表明由于美元价值下降,椭圆问题的条件数量增加,导致对称性损失。最后,我们用瓦塞尔斯坦距离的方法进行数字错误分析。