Biedl et al. introduced the minimum ply cover problem in CG 2021 following the seminal work of Erlebach and van Leeuwen in SODA 2008. They showed that determining the minimum ply cover number for a given set of points by a given set of axis-parallel unit squares is NP-hard, and gave a polynomial time $2$-approximation algorithm for instances in which the minimum ply cover number is bounded by a constant. Durocher et al. recently presented a polynomial time $(8 + \epsilon)$-approximation algorithm for the general case when the minimum ply cover number is $\omega(1)$, for every fixed $\epsilon > 0$. They divide the problem into subproblems by using a standard grid decomposition technique. They have designed an involved dynamic programming scheme to solve the subproblem where each subproblem is defined by a unit side length square gridcell. Then they merge the solutions of the subproblems to obtain the final ply cover. We use a horizontal slab decomposition technique to divide the problem into subproblems. Our algorithm uses a simple greedy heuristic to obtain a $(27+\epsilon)$-approximation algorithm for the general problem, for a small constant $\epsilon>0$. Our algorithm runs considerably faster than the algorithm of Durocher et al. We also give a fast $2$-approximation algorithm for the special case where the input squares are intersected by a horizontal line. The hardness of this special case is still open. Our algorithm is potentially extendable to minimum ply covering with other geometric objects such as unit disks, identical rectangles etc.
翻译:Biedl et al. 在2008 SOD 2008 的 Erlebach 和 van Leeuwen 的开创性工作之后, 在 CG 2021 中引入了最小点覆盖问题 2021 中 。 它们显示, 确定每套固定的轴- 平行单位方格方格的一组点的最小端点的最小端点覆盖数是 NP- 硬值, 并给出了最小端点覆盖数的最小端点覆盖值 2021 。 Durocher et al. 在最小端值由 Erlebach 和 van Leeuwwen 在2008 的 Erlebach 和 van Leeuwwen 的初始端点工作之后, 在普通端点中, 最小端值为$\ omga(1)$, 最小端点覆盖一个最小端点的端点。 我们使用一个直端点的直径方位解算法, 将问题分为一个直方格, 平方格, 平方格为平方格。