Diffusive representations of fractional differential and integral operators can provide a convenient means to construct efficient numerical algorithms for their approximate evaluation. In the current literature, many different variants of such representations have been proposed. Concentrating on Riemann-Liouville integrals whose order is in (0,1), we here present a general approach that comprises most of these variants as special cases and that allows a detailed investigation of the analytic properties of each variant. The availability of this information allows to choose concrete numerical methods for handling the representations that exploit the specific properties, thus allowing to construct very efficient overall methods.
翻译:分差和整体操作员的分差和整体操作员的硬性表示方式可以提供方便的手段,为近似评价制定有效的数字算法。在目前的文献中,提出了许多不同的这种表示方式。我们把这种表示方式集中在其顺序在(0,1)的里曼-利乌维尔综合体上,这里我们提出一种总的办法,把大多数这些变式都作为特殊情况来组成,以便详细调查每种变式的分析特性。这种资料的提供使得能够选择具体的数字方法来处理利用特定特性的表示方式,从而能够制定非常有效的整体方法。