A fundamental question in computer vision is whether a set of point pairs is the image of a scene that lies in front of two cameras. Such a scene and the cameras together are known as a chiral reconstruction of the point pairs. In this paper we provide a complete classification of k point pairs for which a chiral reconstruction exists. The existence of chiral reconstructions is equivalent to the non-emptiness of certain semialgebraic sets. For up to three point pairs, we prove that a chiral reconstruction always exists while the set of five or more point pairs that do not have a chiral reconstruction is Zariski-dense. We show that for five generic point pairs, the chiral region is bounded by line segments in a Schl\"afli double six on a cubic surface with 27 real lines. Four point pairs have a chiral reconstruction unless they belong to two non-generic combinatorial types, in which case they may or may not.
翻译:计算机视觉中的一个基本问题是,一组点对是否是两部相机前方的场景的图像。这样的场景和相机合在一起被称为对点的手艺重建。 在本文中,我们提供了对K点对的完整分类,而对于K点对来说,存在着一种手艺重建。 手艺重建的存在相当于某些半叶形装置的无空性。 最多有三个点对, 我们证明手艺重建始终存在, 而没有手艺重建的5个或5个以上点对是Zariski- densense。 我们显示,对于5个通用点对,手艺区域被一条Schl\'afli 双六的直立面和27条实线的线捆绑。 4个点对有手艺重建, 除非它们属于两种非遗传型的组合, 不论它们是否属于这两种类型。