In this work we investigate the use of the Signature Transform in the context of Learning. Under this assumption, we advance a supervised framework that potentially provides state-of-the-art classification accuracy with the use of few labels without the need of credit assignment and with minimal or no overfitting. We leverage tools from harmonic analysis by the use of the signature and log-signature, and use as a score function RMSE and MAE Signature and log-signature. We develop a closed-form equation to compute probably good optimal scale factors, as well as the formulation to obtain them by optimization. Techniques of Signal Processing are addressed to further characterize the problem. Classification is performed at the CPU level orders of magnitude faster than other methods. We report results on AFHQ, MNIST and CIFAR10, achieving 100% accuracy on all tasks assuming we can determine at test time which probably good optimal scale factor to use for each category.
翻译:在这项工作中,我们调查了在学习背景下签名变换的使用情况。在这个假设下,我们推进了一个监督框架,有可能提供最新的分类准确性,在不需要信用分配的情况下使用少数标签,且不过分或不过分。我们利用使用签名和日志签名进行和谐分析的工具,并将RMSE和MAE签名和日志签名作为一种记分函数使用。我们开发了一个封闭式方程式方程式,以计算可能的最佳比例系数,以及以优化方式获得这些系数的配方。信号处理技术是用来进一步确定问题特征的。在CPU级别级别上进行分类的速度比其他方法快。我们报告了关于AFHQ、MNIST和CIFAR10的结果,所有任务都实现了100%的准确性,假设我们可以在测试时确定每个类别可能使用的最佳比例系数。