We investigate Ramsey expansions, the coherent extension property for partial isometries (EPPA), and the existence of a stationary independence relation for all classes of metrically homogeneous graphs from Cherlin's catalogue. We show that, with the exception of tree-like graphs, all metric spaces in the catalogue have precompact Ramsey expansions (or lifts) with the expansion property. With two exceptions we can also characterise the existence of a stationary independence relation and coherent EPPA. Our results are a contribution to Ne\v set\v ril's classification programme of Ramsey classes and can be seen as empirical evidence of the recent convergence in techniques employed to establish the Ramsey property, the expansion property, EPPA and the existence of a stationary independence relation. At the heart of our proof is a canonical way of completing edge-labelled graphs to metric spaces in Cherlin's classes. The existence of such a ``completion algorithm'' then allows us to apply several strong results in the areas that imply EPPA or the Ramsey property. The main results have numerous consequences for the automorphism groups of the \Fraisse{} limits of the classes. As corollaries, we prove amenability, unique ergodicity, existence of universal minimal flows, ample generics, small index property, 21-Bergman property and Serre's property (FA).
翻译:本文研究 Cherlin 目录中度量同构图类的拉姆齐扩张、局部等距同构的连续扩张属性(EPPA)以及静止独立关系的存在性。我们展示了,除了树形图外,目录中的所有度量空间都具有预紧的拉姆齐扩张(或提升)和扩张属性。除了两个例外,我们还可以表征静止独立关系和EPPA的存在性。我们的结果是为了奎林的拉姆齐分类计划做出的贡献,它可以看作是近年来在建立拉姆齐性、扩张性、EPPA 和静止独立关系时所采用的技术趋同的经验证据。在证明过程中,我们提出一种将边标记图完成到 Cherlin 类中度量空间的规范方法。这种“完成算法”的存在使我们能够应用这些领域中的一些强力结果,从而证明了EPPA或拉姆齐性。该主要结果对类的 Fraïssé 极限的自同构群产生了许多后果。作为推论,我们证明了适应性、唯一性及特殊籍流的存在,丰富的泛型,小指数和塞尔的性质(FA)。