There is growing awareness that errors in the model equations cannot be ignored in data assimilation methods such as four-dimensional variational assimilation (4D-Var). If allowed for, more information can be extracted from observations, longer time windows are possible, and the minimisation process is easier, at least in principle. Weak constraint 4D-Var estimates the model error and minimises a series of linear least-squares cost functionsfunctions, which can be achieved using the conjugate gradient (CG) method; minimising each cost function is called an inner loop. CG needs preconditioning to improve its performance. In previous work, limited memory preconditioners (LMPs) have been constructed using approximations of the eigenvalues and eigenvectors of the Hessian in the previous inner loop. If the Hessian changes significantly in consecutive inner loops, the LMP may be of limited usefulness. To circumvent this, we propose using randomised methods for low rank eigenvalue decomposition and use these approximations to cheaply construct LMPs using information from the current inner loop. Three randomised methods are compared. Numerical experiments in idealized systems show that the resulting LMPs perform better than the existing LMPs. Using these methods may allow more efficient and robust implementations of incremental weak constraint 4D-Var.


翻译:人们日益认识到,模型方程式中的错误不能在四维变异同化(4D-Var)等数据同化方法中被忽视。如果允许的话,可以从观测中提取更多的信息,可以延长时间窗口,最小化过程至少原则上比较容易。4D-Var的弱点估计模型错误,并尽量减少一系列线性最低方位成本功能,这可以通过同源梯梯度法(CG)方法实现;最小化每个成本函数被称为内环。CG需要改进性能的先决条件。在以往的工作中,使用海珊在上一个内部循环中的eigenvalue和eigentors的近似值来构建有限的记忆先决条件(LMPs) 。如果海珊在连续的内环中发生重大变化,LMP的作用可能有限。为了规避这一点,我们建议使用随机化方法低级的乙基值分解法,使用这些近似方法来降低LMP的性能。在以往的内环中,使用有限的内环中,使用有限的存储器(LMPs) 3个随机化方法可以比L更能的递增化方法。

0
下载
关闭预览

相关内容

MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
17+阅读 · 2021年5月3日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
6+阅读 · 2021年6月24日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年11月29日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员