In network design problems, such as compact routing, the goal is to route packets between nodes using the (approximated) shortest paths. A desirable property of these routes is a small number of hops, which makes them more reliable, and reduces the transmission costs. Following the overwhelming success of stochastic tree embeddings for algorithmic design, Haeupler, Hershkowitz, and Zuzic (STOC'21) studied hop-constrained Ramsey-type metric embeddings into trees. Specifically, embedding $f:G(V,E)\rightarrow T$ has Ramsey hop-distortion $(t,M,\beta,h)$ (here $t,\beta,h\ge1$ and $M\subseteq V$) if $\forall u,v\in M$, $d_G^{(\beta\cdot h)}(u,v)\le d_T(u,v)\le t\cdot d_G^{(h)}(u,v)$. $t$ is called the distortion, $\beta$ is called the hop-stretch, and $d_G^{(h)}(u,v)$ denotes the minimum weight of a $u-v$ path with at most $h$ hops. Haeupler {\em et al.} constructed embedding where $M$ contains $1-\epsilon$ fraction of the vertices and $\beta=t=O(\frac{\log^2 n}{\epsilon})$. They used their embedding to obtain multiple bicriteria approximation algorithms for hop-constrained network design problems. In this paper, we first improve the Ramsey-type embedding to obtain parameters $t=\beta=\frac{\tilde{O}(\log n)}{\epsilon}$, and generalize it to arbitrary distortion parameter $t$ (in the cost of reducing the size of $M$). This embedding immediately implies polynomial improvements for all the approximation algorithms from Haeupler {\em et al.}. Further, we construct hop-constrained clan embeddings (where each vertex has multiple copies), and use them to construct bicriteria approximation algorithms for the group Steiner tree problem, matching the state of the art of the non constrained version. Finally, we use our embedding results to construct hop constrained distance oracles, distance labeling, and most prominently, the first hop constrained compact routing scheme with provable guarantees.


翻译:在网络设计问题中,例如紧凑路由, 目标是在节点之间使用( 近似) 最短的路径。 这些路径的理想属性是少量跳跳, 使其更加可靠, 并降低传输成本。 在为算法设计而嵌入的随机树的极大成功之后, Haeupler, Hershkowitz 和 Zuzic (STOC'21) 研究了跳式拉姆赛类型的嵌入树。 具体地, 嵌入 $: G( V, E)\right T$ 的 节点 。 G( t) 节节节节点的跳跃流 $ (t, M,\be, hge, h) 美元 和 美元 亚特立比值的平价 。

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
Top
微信扫码咨询专知VIP会员