An impact of climate change is the increase in frequency and intensity of extreme precipitation events. However, confidently predicting the likelihood of extreme precipitation at seasonal scales remains an outstanding challenge. Here, we present an approach to forecasting the quantiles of the maximum daily precipitation in each week up to six months ahead using the temporal fusion transformer (TFT) model. Through experiments in two regions, we compare TFT predictions with those of two baselines: climatology and a calibrated ECMWF SEAS5 ensemble forecast (S5). Our results show that, in terms of quantile risk at six month lead time, the TFT predictions significantly outperform those from S5 and show an overall small improvement compared to climatology. The TFT also responds positively to departures from normal that climatology cannot.
翻译:气候变化的影响是极端降水事件频率和强度的增加,然而,在季节性规模上自信地预测极端降水的可能性仍是一个突出的挑战。在这里,我们提出一种方法,利用时间聚变变变变压器模型(TFT)预测每周最多每天降水量的四分位数,提前6个月预测最高降水量。我们通过在两个区域的实验,将TFT预测与两个基线的预测进行比较:气候学和经校准的EMEMFFE SEAS5组合预测(S5)。 我们的结果显示,在6个月周转时间的量化风险方面,TFT预测大大超过S5预测的四分位数,显示与气候学相比总体改善不大。 TFTFT还积极回应了与气候学无法实现的正常变化。