The multivariate time series forecasting has attracted more and more attention because of its vital role in different fields in the real world, such as finance, traffic, and weather. In recent years, many research efforts have been proposed for forecasting multivariate time series. Although some previous work considers the interdependencies among different variables in the same timestamp, existing work overlooks the inter-connections between different variables at different time stamps. In this paper, we propose a simple yet efficient instance-wise graph-based framework to utilize the inter-dependencies of different variables at different time stamps for multivariate time series forecasting. The key idea of our framework is aggregating information from the historical time series of different variables to the current time series that we need to forecast. We conduct experiments on the Traffic, Electricity, and Exchange-Rate multivariate time series datasets. The results show that our proposed model outperforms the state-of-the-art baseline methods.
翻译:多变量时间序列预测由于在现实世界的不同领域,如金融、交通和天气等,具有关键作用,吸引了越来越多的注意力。近年来,提出了许多研究工作,以预测多变量时间序列。虽然以前的一些工作考虑了在同一时间戳中不同变量之间的相互依存关系,但现有工作忽略了不同时间邮票不同变量之间的相互联系。在本文中,我们提出了一个简单而高效的、以实例为根据的图表框架,以利用不同时间点上不同变量的相互依存关系,用于多变量时间序列的预测。我们框架的关键理念是将不同变量的历史时间序列信息与我们需要预测的当前时间序列信息汇总起来。我们在交通、电力和汇率多变量系列数据集上进行了实验。结果显示,我们提议的模型超过了最先进的基线方法。