The ability to predict the future movements of other vehicles is a subconscious and effortless skill for humans and key to safe autonomous driving. Therefore, trajectory prediction for autonomous cars has gained a lot of attention in recent years. It is, however, still a hard task to achieve human-level performance. Interdependencies between vehicle behaviors and the multimodal nature of future intentions in a dynamic and complex driving environment render trajectory prediction a challenging problem. In this work, we propose a new, data-driven approach for predicting the motion of vehicles in a road environment. The model allows for inferring future intentions from the past interaction among vehicles in highway driving scenarios. Using our neighborhood-based data representation, the proposed system jointly exploits correlations in the spatial and temporal domain using convolutional neural networks. Our system considers multiple possible maneuver intentions and their corresponding motion and predicts the trajectory for five seconds into the future. We implemented our approach and evaluated it on two highway datasets taken in different countries and are able to achieve a competitive prediction performance.
翻译:预测其他车辆未来移动的能力是人类的潜意识和不费力的技能,是安全自主驾驶的关键。因此,近年来自主汽车的轨迹预测引起了人们的极大关注。然而,实现人的性能仍是一项艰巨的任务。机动车辆行为与在动态和复杂驾驶环境中未来意图的多式联运性质之间的相互依存关系使得轨迹预测成为一个具有挑战性的问题。在这项工作中,我们提出了预测道路环境中车辆运动的新的、以数据为驱动的方法。该模型允许从高速公路驾驶场景中的车辆之间过去的互动中推断出未来的意图。拟议中的系统利用我们以邻里为基础的数据表示方式,共同利用空间和时空空间的相互关系,利用动态神经网络。我们的系统考虑多种可能的机动意图及其相应的运动,并预测未来5秒钟的轨迹。我们实施了我们的方法,并在不同国家采用的两个高速公路数据集上进行了评估,能够实现竞争性的预测。