Legged robot locomotion on a dynamic rigid surface (i.e., a rigid surface moving in the inertial frame) involves complex full-order dynamics that is high-dimensional, nonlinear, and time-varying. Towards deriving an analytically tractable dynamic model, this study theoretically extends the reduced-order linear inverted pendulum (LIP) model from legged locomotion on a stationary surface to locomotion on a dynamic rigid surface (DRS). The resulting model is herein termed as DRS-LIP. Furthermore, this study introduces an approximate analytical solution of the proposed DRS-LIP that is computationally efficient with high accuracy. To illustrate the practical uses of the analytical results, they are used to develop a hierarchical planning framework that efficiently generates physically feasible trajectories for DRS locomotion. The effectiveness of the proposed theoretical results and motion planner is demonstrated both through simulations and experimentally on a Laikago quadrupedal robot that walks on a rocking treadmill.
翻译:在动态僵硬表面(即惯性框架中的僵硬表面移动的硬质表面)上,悬浮的机械机械人移动在动态僵硬表面(即惯性框架中的僵硬表面)上,涉及复杂的全序动态,具有高维、非线性、和时间变化的复杂全序动态。为了产生分析可移动的动态模型,本研究理论上将减序线性倒转钟(LIP)模型从静止表面的弯曲移动扩大到动态僵硬表面(DRS-LIP)上。由此产生的模型现称为DRS-LIP。此外,本研究还引入了高精确计算效率的拟议DRS-LIP的近似分析解决方案。为说明分析结果的实际用途,它们被用于开发一个能有效产生DRS 悬浮运动实际可行的轨迹的等级规划框架。拟议的理论结果和运动规划器的有效性,通过模拟和实验在岩石运动场上行走的拉卡戈四重机器人上得到证明。